Задачи по теории устойчивости
Год выпуска: 2002 Автор: Д. Р. Меркин, С. М. Бауэр, А. Л. Смирнов Издательство: Институт компьютерных исследований Страниц: 128 ISBN: 5-93972-110-9 Описание В книге представлены задачи по основным разделам курса теории устойчивости. Также содержатся решения задач. Для студентов механико-математических и технических специальностей университетов, специалистов.
Похожие книги
Д.Р. Меркин, С.М. Бауэр, А.Л. Смирнов. Задачи по теории устойчивости. – М.: Институт компьютерных исследований, 2002. – 128 с. М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. Операционное исчисление. Теория устойчивости. Задачи и примеры с подробными решениями. – М.: Либроком, 2009. – 176 с. И.А. Соловьев, В.В. Шевелев, А.В. Червяков, А.Ю. Репин. Практическое руководство к решению задач по высшей математике. Кратные интегралы, теория поля, теория функций комплексного переменного, обыкновенные дифференциальные уравнения. – СПб.: Лань, 2009. – 448 с. Е.С. Пятницкий, Н.М. Трухан, Ю.И. Ханукаев, Г.Н. Яковенко. Сборник задач по аналитической механике. – М.: Наука, ФИЗМАТЛИТ, 1996. – 432 с. Е.А. Барбашин. Введение в теорию устойчивости. – М.: Либроком, 2012. – 224 с. В.Н. Рубановский, В.А. Самсонов. Устойчивость стационарных движений в примерах и задачах. – М.: НИЦ "Регулярная и хаотическая динамика", 2003. – 304 с. И.Г. Малкин. Теория устойчивости движения. – М.: Едиториал УРСС, 2010. – 432 с. К.К. Федяевский, Я.Т. Пугачев. Лекции по теории управляемости корабля (комплект из 2 книг). – М.: Военно-морская академия кораблестроения и вооружения имени А. Н. Крылова, 1958. – 312 с. Е.А. Барбашин. Введение в теорию устойчивости. – М.: Либроком, 2014. – 230 с. М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. Операционное исчисление. Теория устойчивости. Задачи и примеры с подробными решениями. – М.: Либроком, 2014. – 176 с. А.Л. Куницын. Основы теории устойчивости. – М.: Регулярная и хаотическая динамика, 2013. – 164 с. А.Ю. Александров, Е.Б. Александрова, А.В. Екимов, Н.В. Смирнов. Сборник задач и упражнений по теории устойчивости. Учебное пособие. – СПб.: Лань, 2016. – 160 с. Малкин И.Г. Теория устойчивости движения. – М.: , 2017. – 432 с. В.П. Радин, Ю.Н. Самогин, В.П. Чирков, А.В. Щугорев. Решение неконсервативных задач теории устойчивости. – М.: ФИЗМАТЛИТ, 2017. – 238 с. С.М. Бауэр, Л.А. Венатовская, Е.Б. Воронкова. Основы теории устойчивости упругих систем. Учебное пособие. – М.: Издательство СПбГУ, 2017. – 52 с. М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. Операционное исчисление. Теория устойчивости. Задачи и примеры с подробными решениями. – М.: Едиториал УРСС, 2018. – 176 с. Д.Р. Меркин, С.М. Бауэр, А.Л. Смирнов, Б.А. Смольников. Теория устойчивости в примерах и задачах. – М.: Регулярная и хаотическая динамика,Институт компьютерных исследований, 2007. – 208 с. Образцы работ
Задайте свой вопрос по вашей теме
Контакты
Поделиться
Мы в социальных сетях
Реклама
Отзывы
Рафаэль Все курсовая зачет, спасибо). Можно уже диплом доделывать.