Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Deep Learning



Год выпуска:
Издательство:
Страниц:
Описание
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


Похожие книги

  1. Robert E. Quinn. The Deep Change Field Guide: A Personal Course to Discovering the Leader Within (J-B US non-Franchise Leadership). – М.: , 2012. – 208 с.
  2. Robert E. Quinn. Deep Change : Discovering the Leader Within (Jossey-Bass Business & Management (Hardcover)). – М.: , 0. – 0 с.
  3. Richard A. McCormack. Lean Machines: Learning From the Leaders of the Next Industrial Revolution. – М.: , 0. – 0 с.
  4. Van B. Weigel. Deep Learning for a Digital Age: Technology's Untapped Potential to Enrich Higher Education. – М.: , 0. – 0 с.
  5. Daniel, M.D. Farb. Laugh and Learn Pharmaceutical Sales Code Manual and CD: Pharmaceutical and Medical Device Ethics and Compliance Training Based on the PHRMA Sales and ... Code for Sales Representatives and Marketers. – М.: , 2003. – 0 с.
  6. Andrew Holmes. Smart Things to Know About Lifelong Learning (Smart Things to Know About (Stay Smart!) Series). – М.: , 2003. – 0 с.
  7. Large-Scale Disasters: Lessons Learned (Organization for Economic Cooperation and Development). – М.: , 2004. – 98 с.
  8. Glyn Rimmington. THIRD PLACE LEARNING: Reflective Inquiry into Intercultural and Global Cage Painting (Stress and Quality of Working Life). – М.: , 2008. – 0 с.
  9. Andrew Holmes. Smart Things to Know About Lifelong Learning. – М.: Capstone, 2003. – 224 с.
  10. Linda Booth Sweeney, Dennis Meadows. The Systems Thinking Playbook: Exercises to Stretch and Build Learning and Systems Thinking Capabilities. – М.: , 2010. – 256 с.
  11. The Red Devils: C 1 (+ DVD). – М.: Heinle Cengage Learning, 2016. – 32 с.
  12. Carey Maloney. Stuff: The M(Group) Interactive Guide to Collecting, Decorating With, and Learning About, Wonderful and Unusual Things. – М.: Pointed Leaf Press, 2012. – 218 с.
  13. Jianbo Yang. Feature selection and model selection in supervised learning. – М.: LAP Lambert Academic Publishing, 2015. – 160 с.
  14. Dina Hayduk. Using Transformative Learning as a Framework for Women and Running. – М.: LAP Lambert Academic Publishing, 2012. – 248 с.
  15. Ripudaman Singh,Karun Deep and Amandeep Kaur Brea. Subject Stream, Gender & Management Of College. – М.: LAP Lambert Academic Publishing, 2013. – 52 с.
  16. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. – М.: The MIT Press, 2012. – 1104 с.
  17. Deep Learning. – М.: , . –  с.

Образцы работ

Тема и предметТип и объем работы
Негентропия и деградация энергии
Информатика
Реферат
10 стр.
Совершенствование системы обучения персонала в организации
Управление персоналом
Дипломный проект
71 стр.
Продвижение брендов в шоу-бизнесе
Электроснабжение городов и промышленных предприятий
Диплом
79 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Дима
Здравствуйте. Марина Михайловна огромное вам спасибо, я защитил на хорошо, только они мой доклад даже слушать не стали сразу попросили назвать Цели и задачи и начали вопросы задавать, но я справился. Спасибо огромное!!!