Год выпуска: 2012 Автор: Santanu Ghorai,Anirban Mukherjee and Pranab K. Dutta Издательство: LAP Lambert Academic Publishing Страниц: 244 ISBN: 9783659278365
Описание
The book describes the development and performance of proximal classifiers, a class of kernel-based regularized mean square error type classifier that learns within the penalized modeling paradigm. The name proximal classifier indicates the fact of classification of a test pattern by its proximity either to a hyperplane or to a class centroid. The basic idea of the nonparallel plane classifier is to model each class of data by fitting separate hyperplane through it. A computationally efficient binary Nonparallel Plane Proximal Classifier (NPPC) is described in detail along with its nonlinear extension. NPPC is also extended to classify multiclass data. A new approach of multiclass data classification through vector-valued regression technique by the proximity to a class centroid is described in detail. These classifiers are applied to discriminate cancerous tissue samples from gene microarray data. The book provides a complete literature survey in the field of Support Vector Machine...
Господи, простите, что так мучаю Вас. только что мне сказали, что план, который Вы мне составили хороший, главное, чтобы все было выполнено по требованиям.