Год выпуска: 2013 Автор: Sara Maloni Издательство: LAP Lambert Academic Publishing Страниц: 136 ISBN: 9783659302695
Описание
In this work we mainly deal with Kleinian groups, which are discrete groups of isometries of the hyperbolic 3–space. In the 1960s, Kleinian groups were studied mainly analytically, but in the 1970s Thurston revolutionised the subject by taking a more topological viewpoint. In 1990s Keen and Series introduced the Pleating Coordinates Theory. Their key idea was to study the deformation spaces of holomorphic families of Kleinian groups via the internal geometry of the associated hyperbolic 3–manifold. In this book, given a surface of negative Euler characteristic, we endow it with a projective structure, which depends on some complex parameters, using a `plumbing' construction. In particular, the traces of the holonomy image of the curves on S are polynomials in these parameters, and we prove a formula expressing the coefficients of the top terms of these polynomials in terms of the Dehn-Thurston coordinates of the curves. If the representation is free and discrete, then the...