This book provides a thorough investigation of near-field heat transfer between parallel plates separated by a vacuum gap of nanometer distances which has potential applications in energy conversion devices, nanofabrication, and near-field imaging. Near-field heat transfer between doped Si plates at varying doping levels is calculated using the improved dielectric functions developed through this dissertation. The near-field energy transfer between two semi-infinite media is maximum when the real part of dielectric function is around -1 due to the excitation of surface waves. The optimized Drude model always results in greater near-field heat transfer compared to the Lorentz model and the maximum achievable near-field heat transfer is nearly 1 order greater than that between real materials. Unlike far-field radiation, the penetration depth in near-field heat transfer is dependent on the vacuum gap. This unusual feature results in a 10 nm thick SiC film behaving as completely opaque at...