Год выпуска: 2014 Автор: Harsha Chavan Издательство: LAP Lambert Academic Publishing Страниц: 88 ISBN: 9783659597893
Описание
In this book, author proposed new offline handwritten signature Identification and Verification based on the contourlet coefficient as the feature extractor and Support Vector Machine (SVM) as the classifier. In projected method, first signature image is normalized based on size. After preprocessing, contourlet coefficients are computed on particular scale and direction using contourlet transform in feature extraction. After feature extraction, all extracted coefficients are feed to a layer of SVM classifiers as feature vector. The number of SVM classifiers is equal to the number of classes. Each SVM classifier determines if the input image belongs to the resultant class or not. The main feature of proposed method is independency to nation of signers. The proposed methodology implemented using MATLAB R2009a software tool with image processing toolbox. The research is on English signature database, based on this experiment, we achieve a 94% identification rate.
Хотела бы выразить Вам свою благодарность за проделанную работу. Комиссии очень понравилась диссертация! Вы мне очень помогли!!! Спасибо за терпение и ответственность. Желаю Вам успехов в вашей деятельности!