Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Hyperspectral Face Recognition



Год выпуска: 2014
Автор: Vinayak Bharadi and Payal Mishra
Издательство: LAP Lambert Academic Publishing
Страниц: 100
ISBN: 9783659363528
Описание
In this book the hyperspectral face recognition system is explored in the context of digital signal & image processing techniques. Hyperspectral images contain a wealth of data, but interpreting them requires an understanding of exactly what properties of human face we are trying to measure, and how they relate to the measurements actually made by the hyperspectral sensor. With the availability of hyperspectral face data it is possible to build systems on this. Main focus current research is to use hyperspectral face images in order to recognition the face. Hyperspectral face images with 33 band are used for generation of Vector Quantization based feature vector extraction process. These images are grouped into eleven sub-bands of three images each. Algorithms like Kekre’s Fast Codebook Generation (KFCG) Algorithm and Kekre’s Median Codebook Generation (KMCG) Algorithm are used to generate codebooks for each sub-band and then store into feature vector database. This feature vector...


Похожие книги

  1. Muhammad Wasim and Abdulbasit Shaikh. Rasterstereography Based Partial Face Recognition. – М.: LAP Lambert Academic Publishing, 2014. – 64 с.
  2. Arjun Mane and Karbhari Kale. Face Recognition Using Principal Component Analysis. – М.: LAP Lambert Academic Publishing, 2015. – 144 с.
  3. GHOLAMREZA ANBARJAFARI and Hasan Demirel. Face Recognition by Using Statistical Analysis. – М.: LAP Lambert Academic Publishing, 2010. – 152 с.
  4. Minakshi Vivek Gupta and Ketki Deshmukh. 3 Factor Security Based on RFID, GSM and Face Recognition. – М.: LAP Lambert Academic Publishing, 2012. – 88 с.
  5. Liton Chandra Paul and Abdulla al Suman. Face Recognition & Principal Component Analysis Method. – М.: LAP Lambert Academic Publishing, 2013. – 80 с.
  6. Abbas Elazhari. Face Recognition From Low Resolution Images. – М.: LAP Lambert Academic Publishing, 2014. – 124 с.
  7. Kailash Karande and Sanjay Talbar. Face Recognition using Independent Component Analysis. – М.: LAP Lambert Academic Publishing, 2012. – 136 с.
  8. Shaokang Chen. Face Recognition under uncontrolled conditions. – М.: LAP Lambert Academic Publishing, 2010. – 140 с.
  9. Yagnesh Parmar. 3D Face Recognition Using PCA. – М.: LAP Lambert Academic Publishing, 2012. – 64 с.
  10. Anukrishnan Menon. Car Ignition Access Control System Based on Face Recognition. – М.: LAP Lambert Academic Publishing, 2012. – 60 с.
  11. Nithin Babu Kante. An Approach of Face Recognition Based on Hidden Markov Model. – М.: LAP Lambert Academic Publishing, 2013. – 56 с.
  12. Sushma Jaiswal. Automatic 3D Face Recognition And Modeling From 2D Images. – М.: LAP Lambert Academic Publishing, 2011. – 208 с.
  13. Lih Chieh Png. Morphological Shared-Weight Neural Network for Face Recognition. – М.: LAP Lambert Academic Publishing, 2013. – 176 с.
  14. Vinayak Bharadi and Payal Mishra. Hyperspectral Face Recognition. – М.: LAP Lambert Academic Publishing, 2014. – 100 с.
  15. Soumen Bag. An Efficient Human Face Recognition Approach. – М.: LAP Lambert Academic Publishing, 2010. – 72 с.
  16. Stepan Mracek. 3D Face Recognition. – М.: LAP Lambert Academic Publishing, 2011. – 92 с.
  17. Rizoan Toufiq and Md. Rabiul Islam. Face Recognition Using Multiple Classifier Fusion. – М.: LAP Lambert Academic Publishing, 2012. – 120 с.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Марина, 24.10
Большое спасибо!)) Надеюсь, ему все понравится)) Ну, а нет так нет.. согласна, что за такой срок, большего материала, увы, не найти.