Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

An Introductory Study on Time Series Modeling and Forecasting



Год выпуска: 2013
Автор: Ratnadip Adhikari and R. K. Agrawal
Издательство: LAP Lambert Academic Publishing
Страниц: 76
ISBN: 9783659335082
Описание
Modeling and forecasting of time series data has fundamental importance in various practical domains. The aim of this book is to present a concise description of some popular time series forecasting models with their salient features. Three important classes of time series models, viz. stochastic, neural networks and support vector machines are studied together with their inherent forecasting strengths and weaknesses. The book also meticulously discusses about several basic issues related to time series analysis, such as stationarity, parsimony, overfitting, etc. Our study is enriched by presenting the empirical forecasting results, conducted on six real-world time series datasets. Five performance measures are used to evaluate the forecasting accuracies of different models as well as to compare the models. For each of the six time series datasets, we further show the obtained forecast diagram which graphically depicts the closeness between the original and predicted observations.


Похожие книги

  1. John Haltiwanger, Haltiwanger, Marilyn Manser, Robert H. Topel, Conference on Research in Income and Wealth. Labor Statistics Measurement Issues (Studies in Income and Wealth, Vol 60). – М.: , 0. – 0 с.
  2. Philip Hans Franses, Richard Paap. Periodic Time Series Models (Advanced Texts in Econometrics). – М.: , 0. – 0 с.
  3. Charles R. Hulten, Edwin Dean, Michael J. Harper, Conference on Research in Income and Wealth. New Developments in Productivity Analysis (Studies in Income and Wealth, Vol 63). – М.: , 0. – 0 с.
  4. Abdol S. Soofi, Liangyue Cao. Modelling and Forecasting Financial Data: Techniques of Nonlinear Dynamics (Studies in Computational Finance, Volume 2). – М.: , 0. – 0 с.
  5. Bo Carlsson. Technological Systems in the Bio Industries: An International Study (Economics of Science, Technology and Innovation, Vol 26). – М.: , 0. – 0 с.
  6. Andrew C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. – М.: Cambridge University Press, 1991. – 572 с.
  7. I Conference on Water Resources Planning and Management 1998 Chicago, William Whipple, United States Army Corps of Engineers, United States Environmental Protection Agency, American Water Resources Association, Conference on environme. Coordination: Water Resources and Environment : Proceedings of Special Session of Asce's 25th Annual Conference on Water Resources Planning and Management and the. – М.: , 0. – 0 с.
  8. Conference on Government Bond Markets and Financial Sector Development, Yun-Hwan Kim, Asian Development Bank. Government Bond Market Development in Asia. – М.: , 0. – 0 с.
  9. Jianqing Fan, Qiwei Yao. Nonlinear Time Series: Nonparametric and Parametric Methods (Springer Series in Statistics). – М.: , 2005. – 552 с.
  10. Robert A. Yaffee. An Introduction to Time Series Analysis and Forecasting. – М.: , 2010. – 528 с.
  11. Bisher Iqelan. Periodically Correlated Time Series: Models and Examples. – М.: LAP Lambert Academic Publishing, 2011. – 204 с.
  12. Gerard Keogh. Univariate Time Series Modelling and Forecasting using TSMARS. – М.: LAP Lambert Academic Publishing, 2010. – 248 с.
  13. Ravi Ramakrishnan. Robust multivariate and nonlinear time series models. – М.: LAP Lambert Academic Publishing, 2010. – 156 с.
  14. VENKATESAN .D and VIJAYAKUMAR. M. BAYESIAN INFERENCE FOR STRUCTURAL CHANGES IN TIME SERIES MODELS. – М.: LAP Lambert Academic Publishing, 2011. – 120 с.
  15. Juli Majumder and Rumana Rois. An Application of Artificial Neural Network Model in GDP Forecasting. – М.: LAP Lambert Academic Publishing, 2013. – 100 с.
  16. Ratnadip Adhikari and R. K. Agrawal. An Introductory Study on Time Series Modeling and Forecasting. – М.: LAP Lambert Academic Publishing, 2013. – 76 с.
  17. Harya Widiputra. Multiple Time-Series Analysis and Modelling. – М.: LAP Lambert Academic Publishing, 2012. – 312 с.

Образцы работ

Тема и предметТип и объем работы
Процессуальные особенности рассмотрения дел судами о компенсации морального вреда
Гражданский процесс
Диплом
70 стр.
Привлекательности труда в организации
Психология
Курсовая работа
35 стр.
Математические модели океанических течений
Переводоведение (теория перевода)
Курсовая работа
42 стр.
Продвижение брендов в шоу-бизнесе
Электроснабжение городов и промышленных предприятий
Диплом
79 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Ярослава, 22.06
Хотела Вам просто сказать спасибо за Ваши труды! Буду Вас рекомендовать своим друзьям и знакомым) Всего доброго!