Год выпуска: 2011 Автор: Imran Sarwar Bajwa and Irfan Hyder Издательство: LAP Lambert Academic Publishing Страниц: 80 ISBN: 9783844328264
Описание
An automatic classification system is presented, which discriminates the different types of single- layered clouds using Principal Component Analysis (PCA) with enhanced accuracy and provides fast processing speed as compared to other techniques. The system is first trained by cloud images. In training phase, system reads major principal features of the different cloud images to produce an image space. In testing phase, a new cloud image can be classified by comparing it with the specified image space using the PCA algorithm. Weather forecasting applications use various pattern recognition techniques to analyze clouds'' information and other meteorological parameters. Neural Networks is an often-used methodology for image processing. Some statistical methodologies like FDA, RBFNN and SVM are also being used for image analysis. These methodologies require more training time and have limited accuracy of about 70%. This level of accuracy often degrades classification of...
Спасибо вам огромное, за вашу работу и помощь мне! дипломную работу после вашего сопровождения оценили на "хорошо" и защитился я тоже на "хорошо" закончил институт не без Вашей помощи:-) Спасибо! Вы делаете очень полезную и благодарную работу!