Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Forecasting Performance



Год выпуска: 2014
Автор: Muhammad Afzal
Издательство: LAP Lambert Academic Publishing
Страниц: 76
ISBN: 9783659664564
Описание
This research attempts to make comparison of the forecasting performance of regression models and time series models. The primary purpose behind this research was to find out which of the two models – regression model and univariate non seasonal ARIMA model – is more accurate and appropriate for forecasting purposes in the real world, keeping in view the cost of the model building. The research utilized data on Pakistan’s exports. The performance of regression models was compared with that of ARIMA models by using the statistics, TIC, RMSPE, MAE, MPE and MAPE. The comparison indicates that the ARIMA models perform much better than the regression models. It was also observed that the plots of actual values of the variables and those of the predicted values based on ARIMA model were closer than those of regression model. This result further supports that the ARIMA models perform better than the regression models. On the basis of the findings and discussion, it is strongly recommended...


Похожие книги

  1. Kenneth D. Lawrence, John B. Jr. Guerard, Gary R. Reeves. Forecasting, Volume 5. – М.: , 0. – 0 с.
  2. Jae K. Shim. Strategic Business Forecasting: The Complete Guide to Forecasting Real World Company Performance, Revised Edition. – М.: CRC Press, 2000. – 312 с.
  3. G. Peter Zhang. Neural Networks in Business Forecasting. – М.: , 0. – 0 с.
  4. Miguel Fernandez-Ranada, F. Xavier Gurrola-Gal, Enrique Lopez-Tello. 3C: A Proven Alternative to MRPII for Optimizing Supply Chain Performance. – М.: , 0. – 0 с.
  5. Lawrence R. Klein. Comparative Performance of U.S. Econometric Models. – М.: , 0. – 0 с.
  6. Richard H. Zeni. Improved Forecast Accuracy in Airline Revenue Management by Unconstraining Demand Estimates from Censored Data. – М.: , 0. – 0 с.
  7. G. Peter Zhang. Neural Networks in Business Forecasting. – М.: , 0. – 0 с.
  8. Marc Wildi. Signal Extraction : Efficient Estimation, 'Unit Root'-Tests and Early Detection of Turning Points (Lecture Notes in Economics and Mathematical Systems). – М.: , 2004. – 0 с.
  9. Juli Majumder and Rumana Rois. An Application of Artificial Neural Network Model in GDP Forecasting. – М.: LAP Lambert Academic Publishing, 2013. – 100 с.
  10. Liam O Donnell. Forecasting English League Football Results. – М.: LAP Lambert Academic Publishing, 2010. – 172 с.
  11. Adelina Tang. Classification and Forecasting. – М.: LAP Lambert Academic Publishing, 2010. – 144 с.
  12. Aye Aye Khin,Eddie Chiew Fook Chong and Zainal Abidin Mohamed. Econometric Forecasting Models for Short Term Natural Rubber Prices. – М.: LAP Lambert Academic Publishing, 2011. – 236 с.
  13. Muhammad Afzal. Forecasting Performance. – М.: LAP Lambert Academic Publishing, 2014. – 76 с.
  14. Natalia Bejan. Evolution and Biases of Economic Forecasting. – М.: LAP Lambert Academic Publishing, 2012. – 148 с.
  15. Yangyan Shi. Forecasting performance. – М.: LAP Lambert Academic Publishing, 2010. – 128 с.
  16. Meriem Djennas,Mustapha Djennas and Mohamed Benbouziane. A Neural Network-Genetic Algorithm Hybrid Model for Forecasting. – М.: LAP Lambert Academic Publishing, 2012. – 56 с.
  17. K. Prabhakaran and S. Varadaraj. Forecasting Stock Price Volatility - An Indian Perspective. – М.: LAP Lambert Academic Publishing, 2014. – 196 с.

Образцы работ

Тема и предметТип и объем работы
Состояние и перспективы рынка туристических услуг во Вьетнаме
Туризм
Диплом
70 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
O.N., 09.09
Спасибо.....спасибо.....спасибо..... Добрый день, Марина Михайловна) спасибо Вам большое, что выручили меня с аттестационной работой. Защитила вчера на 5))) Чему очень рада, хотя эта оценка - заслуженно Ваша. Очень Вам признательна и благодарна.