Год выпуска: 2008 Автор: Matthew Baker, Brian Conrad, Samit Dasgupta, Kiran S. Kedlaya, Jeremy Teitelbaum, edited by David Sa Издательство: Страниц: 203 ISBN: 0821844687
Описание
In recent decades, $p$-adic geometry and $p$-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter School 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject. Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the $p$-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the $p$-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and $p$-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya...
Здравствуйте, Ирина! Получила 5-го апреля - рецензию на к/работу, оценка "Отлично". 10 апреля, защитила к/работу, оценка "Отлично". Поздравляю Вас с отличной работой, спасибо за труд и добросовестный подход к работе. Поздравляю Вас с Пасхой! Счастья, здоровья, побольше радостных моментов в жизни!