Год выпуска: 2010 Издательство: Страниц: 400 ISBN: 026201386X
Описание
Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic modela??in other words, to answer specific questions about the underlying mechanisms of a biological systema??in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks. The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an...