Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression. Generalized linear models. Linear mixed models. Marginal longitudinal data models. Cox survival analysis model. The methods are introduced both at...
Огромное Вам спасибо, с Вами приятно работать. Еще раз Вам спасибо. Да, хвалиться, конечно, не скромно, но качество своих работ я гарантирую, все они были защищены на отлично. Надеюсь на дальнейшее взаимное сотрудничество.