Willmore Global Riemannian ?geometry?
Год выпуска: 1984 Автор: TJ WILLMORE Издательство: Страниц: 214 ISBN: 9780853126997 Описание Willmore Global Riemannian ?geometry? |
Похожие книги - Jeff Cheeger and David G. Ebin. Comparison Theorems in Riemannian Geometry (AMS Chelsea Publishing). – М.: , 2008. – 161 с.
- Vladimir G. Ivancevic, Tijana T. Ivancevic. Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals (Understanding Complex Systems). – М.: , 2008. – 844 с.
- Hassan Akbar-Zadeh. Initiation to Global Finslerian Geometry,68. – М.: , 2010. – 264 с.
- Isaac Chavel. Eigenvalues in Riemannian Geometry,115. – М.: , 2010. – 362 с.
- Barrett O'Neill. Semi-Riemannian Geometry With Applications to Relativity, 103,103. – М.: , 2010. – 468 с.
- William M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised,120. – М.: , 2010. – 400 с.
- Olivier Druet. Blow–Up Theory for Elliptic PDEs in Riemannian Geometry. – М.: , 2004. – 224 с.
- TJ WILLMORE. Willmore Global Riemannian ?geometry?. – М.: , 1984. – 214 с.
- TJ WILLMORE. Willmore: Total ?curvature? In Riemannian Geometry (paper). – М.: , 1983. – 168 с.
- Bhupendra Nath Tiwari. On the Intrinsic Geometry of Instanton Vacua. – М.: LAP Lambert Academic Publishing, 2011. – 108 с.
- Vikram Zaveri. Concept of Time and Unsolved Problems of Physics. – М.: LAP Lambert Academic Publishing, 2012. – 144 с.
- Bhupendra Nath Tiwari. On Real Moduli Stabilization. – М.: LAP Lambert Academic Publishing, 2011. – 116 с.
- Bhupendra Nath Tiwari. Thermodynamic Geometry and Cosmological Constant. – М.: LAP Lambert Academic Publishing, 2012. – 128 с.
- Guy Lebanon. Riemannian Geometry and Statistical Machine Learning. – М.: LAP Lambert Academic Publishing, 2015. – 140 с.
- Augustus Nzomo Wali. Submersions and Submanifolds in an almost Hermitian Manifold. – М.: LAP Lambert Academic Publishing, 2010. – 100 с.
- Cyriaque Atindogbe. Geometry of Lightlike Submanifolds. – М.: LAP Lambert Academic Publishing, 2012. – 120 с.
- Satya Sankar De and Farook Rahaman. Finsler Geometry of Hadrons and Lyra Geometry: Cosmological Aspects. – М.: LAP Lambert Academic Publishing, 2012. – 188 с.
Образцы работ
Задайте свой вопрос по вашей теме
|
|
Контакты
|
|
Поделиться
|
|
Мы в социальных сетях
|
|
Реклама
|
|
Отзывы
|
Алина, 14.08 | Спасибо большое за разъяснения! Мне они очень помогли... | |
|