Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Rules Extraction From Trained Neural Networks Using Decision Trees



Год выпуска: 2012
Автор: Koushal Kumar
Издательство: LAP Lambert Academic Publishing
Страниц: 64
ISBN: 9783659195754
Описание
Artificial neural networks(ANN)are very efficient in solving various kinds of problems.But Lack of explanation capability (Black box nature of Neural Networks)is one of the most important reasons why Artificial Neural Networks do not get necessary interest in some parts of industry. In this book we provide an efficient approach to overcome the black box nature of Artificial neural networks.In this approach Artificial neural networks first trained and then combined with decision trees in order to fetch knowledge learn in the training process. After successful training knowledge is extracted from these trained neural networks using decision trees in the forms of IF THEN Rules which we can easily understand as compare to direct neural network outputs. Weka machine learning simulator with version 3.7.5 and Matlab version R2010a is used for experimental purpose.The experimental study is done on bank customer's data which have 12 attributes and 600 instances. The results study show that...


Похожие книги

  1. Paul D. McNelis. Neural Networks in Finance: Gaining Predictive Edge in the Market (Academic Press Advanced Finance Series). – М.: , 2004. – 256 с.
  2. Artificial Neural Networks: Methods and Applications (Methods in Molecular Biology). – М.: , 2008. – 254 с.
  3. Zhazar Toktabolat. Using Artificial Neural Networks in Reservoir Characterization. – М.: Scholars Press, 2013. – 144 с.
  4. Suresh Jagirdar. Artificial Neural Networks, A Modern Era In Computing. – М.: LAP Lambert Academic Publishing, 2014. – 84 с.
  5. Philip Adewuyi. Demand-Side Management Analysis Using Artificial Neural Network. – М.: LAP Lambert Academic Publishing, 2013. – 72 с.
  6. Zainab Khalid Awan,Aamir Khan and Anam Iftikhar. Hybrid Neural Networks: From Application Point Of View. – М.: LAP Lambert Academic Publishing, 2012. – 68 с.
  7. Vinita Dutt Sunderiyal and Ajit Kumar Singh Yadav. Handwritten Character Recognition Using Artificial Neural Network. – М.: LAP Lambert Academic Publishing, 2013. – 140 с.
  8. Shailendra Kumar Dewangan. Devnagari Handwritten Signature Recognition Using Neural Network. – М.: LAP Lambert Academic Publishing, 2012. – 124 с.
  9. Sushama Shelke and Shaila Apte. Handwritten Marathi Character Recognition using Neural Networks. – М.: LAP Lambert Academic Publishing, 2012. – 188 с.
  10. D. Lavanya and K. Usha Rani. Decision Trees and Hybrid Approaches. – М.: Scholars' Press, 2014. – 96 с.
  11. Boran Sekeroglu and Gulsum Y?ld?z As?ksoy. Diagnosis Of Epilepsy Disorders Using Artificial Neural Networks. – М.: LAP Lambert Academic Publishing, 2013. – 96 с.
  12. Ali Isin and Dogan Ibrahim. Using Neural Networks for the Recognition of Cardiac ECG Signals. – М.: LAP Lambert Academic Publishing, 2013. – 100 с.
  13. Koushal Kumar. Rules Extraction From Trained Neural Networks Using Decision Trees. – М.: LAP Lambert Academic Publishing, 2012. – 64 с.
  14. Farhana Shahid and Ubaid Ur Rahman. Detection Of Heart Disease Using Decision Tree Technique. – М.: LAP Lambert Academic Publishing, 2014. – 64 с.
  15. Nermine Hendy. Speech Emotion Recognition Using Neural Network. – М.: LAP Lambert Academic Publishing, 2014. – 148 с.
  16. Stefano Scanzio. Speeding-up Artificial Neural Networks. – М.: LAP Lambert Academic Publishing, 2012. – 104 с.
  17. Iveta Mrazova. Knowledge Extraction with Neural Networks. – М.: LAP Lambert Academic Publishing, 2011. – 176 с.

Образцы работ

Тема и предметТип и объем работы
Жан-Жак Анно искатель приключений
Культурология
Курсовая работа
25 стр.
Особенности виртуального общения
Психология
Курсовая работа
28 стр.
Грамматический анализ субстантивированных прилагательных и причастий
Русский язык
Курсовая работа
38 стр.
Последствия операции НАТО
Политология
Диплом
80 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Александр
Спасибо Вам огромное за помощь, не знаю, что бы я делала.