Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

LSTM Recurrent Neural Networks for Signature Verification



Год выпуска: 2012
Автор: Conrad Tiflin
Издательство: LAP Lambert Academic Publishing
Страниц: 104
ISBN: 9783846589946
Описание
The author investigated the application of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to the task of signature verification. Traditional RNNs are capable of modeling dynamical systems with hidden states; they have been successfully applied to domains ranging from financial forecasting to control and speech recognition. This manuscript is the result of successfully applying on-line signature time series data to traditional LSTM, LSTM with forget gates and LSTM with peephole connections algorithms originally developed by S. Hochreiter and J. Schmidhuber. It can be clearly seen in this pattern classification problem that traditional LSTM RNNs outperform LSTMs with forget gates and peephole connections. The latter also outperform traditional RNNs which cannot seem to even learn this task due to the long-term dependency problem.


Похожие книги

  1. Artificial Higher Order Neural Networks for Economics and Business (Premier Reference Source). – М.: , 2008. – 542 с.
  2. Wt Miller. Neural Networks for Control. – М.: , 1991. – 542 с.
  3. Albert Nigrin. Neural Networks for Pattern Recognition. – М.: , 1993. – 436 с.
  4. Gail A Carpenter. Neural Networks for Vision & Image Processing. – М.: , 1992. – 486 с.
  5. Yunong Zhang. Recurrent Neural Networks. – М.: LAP Lambert Academic Publishing, 2010. – 200 с.
  6. Jayanta Kumar Basu and Monal Dutta. Application of Artificial Neural Network for Ibuprofen Adsorption. – М.: LAP Lambert Academic Publishing, 2013. – 52 с.
  7. Mohammed Waseem. Design & Implementation of Feed Forward Neural Network for FIR Filter. – М.: LAP Lambert Academic Publishing, 2013. – 72 с.
  8. Massieh Najafi. Application of Auto-Associative Neural Networks for Sensor Diagnostics. – М.: LAP Lambert Academic Publishing, 2010. – 100 с.
  9. Mohammad Bataineh. Artificial neural network for studying human performance. – М.: LAP Lambert Academic Publishing, 2013. – 184 с.
  10. Paresh Chandra Deka and V Chandramoulli. Fuzzy logic and artificial neural network for hydrological modeling. – М.: LAP Lambert Academic Publishing, 2011. – 184 с.
  11. Mustafa Mohammed Abed. Dynamic Neural Network for Predicting Creep of Structural Masonry. – М.: LAP Lambert Academic Publishing, 2012. – 96 с.
  12. Tarik Rashid. Recurrent Neural Network Model. – М.: LAP Lambert Academic Publishing, 2013. – 172 с.
  13. Yassen Adel and Luma Naji. Design feed forward neural networks for solving ordinary intial value. – М.: LAP Lambert Academic Publishing, 2013. – 132 с.
  14. Ali Isin and Dogan Ibrahim. Using Neural Networks for the Recognition of Cardiac ECG Signals. – М.: LAP Lambert Academic Publishing, 2013. – 100 с.
  15. Lih Chieh Png. Morphological Shared-Weight Neural Network for Face Recognition. – М.: LAP Lambert Academic Publishing, 2013. – 176 с.
  16. Hassan Farsi and Pouriya Etezadifar. Time Variable PDF Presented by Neural Network for data Compression. – М.: LAP Lambert Academic Publishing, 2013. – 92 с.
  17. Conrad Tiflin. LSTM Recurrent Neural Networks for Signature Verification. – М.: LAP Lambert Academic Publishing, 2012. – 104 с.

Образцы работ

Тема и предметТип и объем работы
Особенности виртуального общения
Психология
Курсовая работа
28 стр.
Разработка нового товара в маркетинге
Маркетинг
Курсовая работа
40 стр.
Этапы формирования теории президентства
История государства и права
Курсовая работа
30 стр.
Word
Информатика
Реферат
7 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Галина, 26.02
Спасибо большое за диплом, мне он понравился