Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Воспользуйтесь формой поиска по сайту, чтобы подобрать полный список использованной литературы.
Если вы хотите выбрать для списка литературы книги определенного года издания, достаточно дописать его к поисковому запросу.

Результаты поиска

Поиск материалов

Лучшие результаты

  1. Alain Connes. Noncommutative Geometry. – М.: , 2010. – 661 с.
  2. Sengul Nalc? and Oktay K. Pashaev. Exactly Solvable Q-Extended Nonlinear Classical And Quantum Models. – М.: LAP Lambert Academic Publishing, 2014. – 272 с.
  3. Anca Tureanu. Noncommutative Quantum Field and Gauge Theories. – М.: LAP Lambert Academic Publishing, 2010. – 88 с.
  4. Ahmad Zainy Al-Yasry. Covering, Correspondence and Noncommutative Geometry. – М.: LAP Lambert Academic Publishing, 2011. – 108 с.
  5. Igor Nikolaev. Three papers on operator algebras in geometric topology. – М.: LAP Lambert Academic Publishing, 2013. – 56 с.
  6. Ashish Gupta. Quantum Laurent Polynomials. – М.: LAP Lambert Academic Publishing, 2012. – 96 с.

Дополнительные результаты

  1. Kerry McLean. 501 GEOMETRY QUESTIONS & ANSWERS. – М.: , 0. – 0 с.
  2. Colleen Schultz. Just in Time Geometry (Just in Time Series). – М.: LearningExpress, 2004. – 288 с.
  3. Donald G. Saari. Basic Geometry of Voting (Basic Geometry of Voting). – М.: , 2003. – 0 с.
  4. Debra Anne Ross. Master Math: Geometry (Master Math). – М.: , 2004. – 0 с.
  5. Jean-Daniel Boissonnat, Mariette Yvinec, H. Bronniman. Algorithmic Geometry. – М.: , 0. – 0 с.
  6. Mark Saul. Hadamard's Plane Geometry: A Reader's Companion. – М.: , 2010. – 353 с.
  7. Pierre Henry-Labordere. Analysis, Geometry, and Modeling in Finance (Chapman & Hall/Crc Financial Mathematics Series). – М.: , 2008. – 400 с.
  8. O. Bottema. Topics in Elementary Geometry. – М.: Springer, 2008. – 142 с.
  9. Jeff Cheeger and David G. Ebin. Comparison Theorems in Riemannian Geometry (AMS Chelsea Publishing). – М.: , 2008. – 161 с.
  10. Matthew Baker, Brian Conrad, Samit Dasgupta, Kiran S. Kedlaya, Jeremy Teitelbaum, edited by David Sa. $p$-adic Geometry (University Lecture Series). – М.: , 2008. – 203 с.
  11. V. M. Buchstaber and I. M. Krichever. Geometry, Topology, and Mathematical Physics (American Mathematical Society Translations Series 2). – М.: , 2008. – 284 с.
  12. A. E. Layng. Euclid's Elements Of Geometry: Books I. II. III. IV. VI And Portions Of Books V. And XI., With Notes, Examples, Exercises, Appendices And A Collection Of Examination Papers. – М.: , 2008. – 372 с.
  13. Dan Abramovich, Marcos Marino, Michael Thaddeus, Ravi Vakil. Enumerative Invariants in Algebraic Geometry and String Theory: Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 6-11, 2005 (Lecture ... Mathematics / Fondazione C.I.M.E., Firenze). – М.: , 2008. – 210 с.
  14. Emerging Topics on Differential Geometry and Graph Theory. – М.: , 2010. – 0 с.
  15. Helga Baum, Andreas Juhl. Conformal Differential Geometry: Q-Curvature and Conformal Holonomy (Oberwolfach Seminars). – М.: , 2010. – 164 с.
  16. Wilfrid S. Kendall, Ilya Molchanov. New Perspectives in Stochastic Geometry. – М.: , 2010. – 608 с.
  17. CliffsNotes Geometry Practice Pack. – М.: , 2010. – 264 с.
  18. Algebra, Arithmetic, and Geometry: Volume II: In Honor of Yu. I. Manin (Progress in Mathematics). – М.: , 2010. – 600 с.
  19. Michael O'Leary. Revolutions of Geometry (Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts). – М.: , 2010. – 587 с.
  20. Marcel Berger. Geometry Revealed: A Jacob's Ladder to Modern Higher Geometry. – М.: , 2010. – 860 с.
  21. Michael O?Leary. Revolutions of Geometry. – М.: , 2010. – 160 с.
  22. The Math Forum. Dr. Math® Introduces Geometry. – М.: , 2004. – 192 с.
  23. K. Shiohama. Geometry of Manifolds. – М.: , 2010. – 517 с.
  24. A.D. Bruno. Power Geometry in Algebraic and Differential Equations,57. – М.: , 2010. – 396 с.
  25. Author Unknown. Handbook of the Geometry of Banach Spaces,Volume 2. – М.: , 2010. – 870 с.
  26. Author Unknown. Handbook of Convex Geometry,Volume B. – М.: , 2010. – 0 с.
  27. Author Unknown. Handbook of Convex Geometry,Volume A. – М.: , 2010. – 0 с.
  28. M.A. Akivis. Projective Differential Geometry of Submanifolds,49. – М.: , 2010. – 0 с.
  29. Franki J.E. Dillen. Handbook of Differential Geometry. – М.: , 2010. – 574 с.
  30. Alain Connes. Noncommutative Geometry. – М.: , 2010. – 661 с.
  31. Author Unknown. The geometry of geodesics,6. – М.: , 2010. – 0 с.
  32. Author Unknown. Local analytic geometry,14. – М.: , 2010. – 0 с.
  33. Author Unknown. Geometry of manifolds,15. – М.: , 2010. – 0 с.
  34. Author Unknown. Projective geometry and projective metrics,3. – М.: , 2010. – 0 с.
  35. Hassan Akbar-Zadeh. Initiation to Global Finslerian Geometry,68. – М.: , 2010. – 264 с.
  36. Isaac Chavel. Eigenvalues in Riemannian Geometry,115. – М.: , 2010. – 362 с.
  37. Barrett O'Neill. Semi-Riemannian Geometry With Applications to Relativity, 103,103. – М.: , 2010. – 468 с.
  38. Barrett O'Neill. Elementary Differential Geometry, Revised 2nd Edition. – М.: , 2010. – 520 с.
  39. Walter A. Meyer. Geometry and Its Applications. – М.: , 2010. – 560 с.
  40. Reinhard Klette. Digital Geometry. – М.: , 2010. – 500 с.
  41. William M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised,120. – М.: , 2010. – 400 с.
  42. F.J.E. Dillen. Handbook of Differential Geometry, Volume 1. – М.: , 2010. – 0 с.
  43. J.R. Sack. Handbook of Computational Geometry. – М.: , 2010. – 0 с.
  44. George L. Hersey. Architecture and Geometry in the Age of the Baroque. – М.: University of Chicago Press, 2003. – 280 с.
  45. Eugene M. Izhikevich. Dynamical Systems in Neuroscience – The Geometry of Excitability and Bursting. – М.: , 2010. – 528 с.
  46. E REITMAN. Reitman: ?exploring? The Geometry Of Nature: Compu Ter Modeling Of Chaos Fractals (pr Only). – М.: , 1989. – 208 с.
  47. Olivier Faugeras. The Geometry of Multiple Images – The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications. – М.: , 2004. – 672 с.
  48. Igusa. Algebraic Analysis, Geometry, and Number Theory. – М.: , 1990. – 0 с.
  49. Igusa. Algebraic Geometry. – М.: , 1977. – 0 с.
  50. Herbert Busemann. Metric Methods of Finsler Spaces & in the Foundations of Geometry. – М.: , 1942. – 244 с.
  51. Mark Ryan. Geometry Workbook For Dummies®. – М.: , 2006. – 312 с.
  52. Peter Gardenfors. Conceptual Spaces – The Geometry of Thought. – М.: , 2000. – 320 с.
  53. Richard Evan Schwartz. Spherical CR Geometry and Dehn Surgery. – М.: , 2007. – 200 с.
  54. Richard Evan Schwartz. Spherical CR Geometry and Dehn Surgery. – М.: , 2007. – 200 с.
  55. Fukagawa Hidetoshi. Sacred Mathematics – Japanese Temple Geometry. – М.: , 2008. – 440 с.
  56. Lynette Long. Groovy Geometry. – М.: , 2003. – 128 с.
  57. Olivier Druet. Blow–Up Theory for Elliptic PDEs in Riemannian Geometry. – М.: , 2004. – 224 с.
  58. Howard Anton. Calculus with Analytic Geometry, Brief Edition. – М.: , 1995. – 800 с.
  59. David B. Dooner. The Kinematic Geometry of Gearing. – М.: , 1995. – 472 с.
  60. WWJ HULSBERGEN. Hulsbergen: Conjectures In Arithmetic Algebraic Geometry. – М.: , 1992. – 244 с.
  61. Shmuel Weinberger. Computers, Rigidity, and Moduli – The Large Scale Fractal Geometry of Riemannian Moduli Space. – М.: , 2005. – 160 с.
  62. Anna Ottani Cavina. Geometries of Silence – Three Approaches to Neoclassical Art. – М.: , 2005. – 288 с.
  63. Harald Niederreiter. Algebraic Geometry in Coding Theory and Cryptography. – М.: , 2009. – 248 с.
  64. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 1008 с.
  65. Olivier Faugeras. The Geometry of Multiple Images – The Laws That Govern the Formation of Multiple Images of a Scene & Some of Their Applications. – М.: , 2001. – 668 с.
  66. Lindsey Fallow. Head First 2D Geometry. – М.: , 2009. – 354 с.
  67. Lindsey Fallow. Head First 3D Geometry. – М.: , 2009. – 300 с.
  68. Edwin M. Hemmerling. Fundamentals of College Geometry. – М.: , 1970. – 464 с.
  69. SL SALAS. Salas ?calculus? – One And Several Variables With Analytic Geometry Combined 4ed. – М.: , 1982. – 1136 с.
  70. H Behnke. Fundamentals of Mathematics – Geometry V 2. – М.: , 1984. – 698 с.
  71. Hida. Contributions to Automorphic Forms, Geometry and Number Theory. – М.: , 2004. – 944 с.
  72. H MAN. Anton ?students Solutions? Manual To Accompany ?calculus? With Analytic Geometry. – М.: , 1980. – 452 с.
  73. Lynn Zelevansky. Beyond Geometry – Experiments in Form 1940s–1970s. – М.: , 2004. – 240 с.
  74. R. David Gustafson. Elementary Plane Geometry. – М.: , 1985. – 358 с.
  75. Shreeram Abhyankar. Ramification Theoretic Methods in Algebraic Geometry. – М.: , 1994. – 106 с.
  76. Robin Evans. The Projective Cast – Architecture & Its Three Geometries. – М.: , 1995. – 452 с.
  77. Professor Dietrich Stoyan. Stochastic Geometry and its Applications. – М.: , 2008. – 456 с.
  78. Howard Anton. Calculus with Analytic Geometry. – М.: , 1994. – 0 с.
  79. Hironaka. Oscar Zariski Collected Papers – Found of Algebraic Geometry & Res etc V 1. – М.: , 1972. – 0 с.
  80. Michael Harris. The Geometry & Cohomology of Some Simple Shimura Varieties. – М.: , 2001. – 284 с.
  81. AJ ELLIS. Ellis ?basic Algebra? And Geometry For Scientists And Engineers. – М.: , 1982. – 200 с.
  82. Mark Ryan. Geometry Essentials For Dummies®. – М.: , 2011. – 192 с.
  83. Wendy Arnone PhD. Geometry For Dummies®. – М.: , 2001. – 384 с.
  84. Lindsey Fallow. Head First Geometry. – М.: , 2009. – 700 с.
  85. SL SALAS. Salas: Calculus – One & Several Variables With Analytic Geometry (combined) 5ed. – М.: , 1986. – 1230 с.
  86. Serre. Geometry and Number Theory. – М.: , 1983. – 0 с.
  87. Judith A. Muschla. Geometry Teacher?s Activities Kit. – М.: , 2001. – 384 с.
  88. R. David Gustafson. Elementary Geometry. – М.: , 1991. – 464 с.
  89. Dominic Widdows. The Geometry of Meaning. – М.: , 2005. – 200 с.
  90. Greg Lynn. Architecture After Geometry. – М.: , 1997. – 112 с.
  91. G HECTOR. Hector Introduction To The ?geometry? Of Foliation S. – М.: , 1981. – 234 с.
  92. HSM COXETER. Coxeter Geometry ?revisited?. – М.: , 1978. – 0 с.
  93. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 176 с.
  94. David Gay. Geometry by Discovery. – М.: , 1997. – 432 с.
  95. Behnke. Fundamentals of Mathematics – Geometry V 2. – М.: , 1975. – 0 с.
  96. PK JAIN. Jain: Textbook Of Analytical Geometry Of Two Dimensions (pr Only). – М.: , 1984. – 330 с.
  97. I DROOYAN. Drooyan Elementary Algebra With ?geometry?. – М.: , 1976. – 334 с.
  98. H. S. M. Coxeter. Introduction to Geometry. – М.: , 1969. – 470 с.
  99. Jens Erik Fenstad. Grammar, Geometry and Brain. – М.: , 2010. – 120 с.
  100. Howard Anton. Calculus with Analytic Geometry. – М.: , 1988. – 212 с.
  101. TJ WILLMORE. Willmore Global Riemannian ?geometry?. – М.: , 1984. – 214 с.
  102. Mark Ryan. Geometry For Dummies®. – М.: , 2008. – 408 с.
  103. Satyan Devadoss. Discrete and Computational Geometry. – М.: , 2011. – 280 с.
  104. Wendy Arnone PhD. Geometrie fur Dummies. – М.: , 2006. – 347 с.
  105. G TOTH. Toth: ?harmonic? And Minimal Maps – With Applicati Ons In Geometry And Physics. – М.: , 1984. – 348 с.
  106. MV SWEET. Sweet ?algebra? Geometry And Trigonometry In Scien Ce Engineering & Mathematics. – М.: , 1984. – 618 с.
  107. Janice VanCleave. Janice VanCleave?s Geometry for Every Kid. – М.: , 1994. – 240 с.
  108. G HECTOR. Hector: Introduction To The ?geometry? Of Foliatio Ns –foliat Of Codimension One 2ed (pr Only). – М.: , 1987. – 308 с.
  109. Henry S Horn. Adaptive Geometry of Trees (MPB–3). – М.: , 1971. – 146 с.
  110. Peter H. Selby. Geometry and Trigonometry for Calculus. – М.: , 1975. – 432 с.
  111. Abelson. Turtle Geometry – The Computer as a Medium for Exploring Mathematics. – М.: , 1981. – 0 с.
  112. G HECTOR. Hector: Introduction To The Geometry Of ?foliation S? 2ed (pr Only). – М.: , 1986. – 248 с.
  113. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 1408 с.
  114. SL SALAS. Salas ?calculus? – One And Several Variables With Analytic Geometry 4ed. – М.: , 1982. – 614 с.
  115. SL SALAS. Salas ?calculus? – One And Several Variables With Analytic Geometry 4ed. – М.: , 1982. – 672 с.
  116. Abelson. Turtle Geometry – The Computer as a Medium for Exploring Mathematics (Paper). – М.: , 1986. – 0 с.
  117. AJ OLDKNOW. Oldknow: ?microcomputers? In Geometry (cloth). – М.: , 1987. – 212 с.
  118. Robin Evans. Projective Cast – Architecture & its Three Geometries. – М.: , 2000. – 454 с.
  119. Michael W Davis. Geometry and Topology of Coxeter Groups. – М.: , 2007. – 552 с.
  120. Howard Anton. Calculus with Analytic Geometry. – М.: , 1988. – 546 с.
  121. Howard Anton. Calculus with Analytic Geometry. – М.: , 1988. – 820 с.
  122. Howard Anton. Calculus with Analytic Geometry. – М.: , 1988. – 410 с.
  123. Howard Anton. Calculus with Analytic Geometry. – М.: , 1989. – 1026 с.
  124. Howard Anton. Calculus with Analytic Geometry. – М.: , 1989. – 560 с.
  125. Clark. Contributions to Analysis and Geometry. – М.: , 1982. – 0 с.
  126. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 180 с.
  127. J CHAKRABORTY. Chakraborty ?kinematics? & Geometry Of Planar And Spatial Cam Mechanisms. – М.: , 1977. – 0 с.
  128. TJ WILLMORE. Willmore: Total ?curvature? In Riemannian Geometry (paper). – М.: , 1983. – 168 с.
  129. William P Thurston. Three–Dimensional Geometry & Topology V 1. – М.: , 1997. – 320 с.
  130. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 442 с.
  131. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 200 с.
  132. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 204 с.
  133. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 460 с.
  134. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 560 с.
  135. Howard Anton. Calculus with Analytic Geometry. – М.: , 1992. – 1072 с.
  136. Sengul Nalc? and Oktay K. Pashaev. Exactly Solvable Q-Extended Nonlinear Classical And Quantum Models. – М.: LAP Lambert Academic Publishing, 2014. – 272 с.
  137. Anca Tureanu. Noncommutative Quantum Field and Gauge Theories. – М.: LAP Lambert Academic Publishing, 2010. – 88 с.
  138. Ahmad Zainy Al-Yasry. Covering, Correspondence and Noncommutative Geometry. – М.: LAP Lambert Academic Publishing, 2011. – 108 с.
  139. Igor Nikolaev. Three papers on operator algebras in geometric topology. – М.: LAP Lambert Academic Publishing, 2013. – 56 с.
  140. Ashish Gupta. Quantum Laurent Polynomials. – М.: LAP Lambert Academic Publishing, 2012. – 96 с.

Лучшие результаты

Ничего не найдено

Дополнительные результаты

Ничего не найдено

Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.






Добавить файл

- осталось написать email или телефон

Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Эдуард
Работы сопровождались замечательно!