Год выпуска: 2012 Автор: Bagher Jamali,Hooshang Jazayeri-Rad and Mohammad Ali Ghayyem Издательство: LAP Lambert Academic Publishing Страниц: 108 ISBN: 9783848411177
Описание
Neural networks and fuzzy logic have some common features such as distributed representation of knowledge, ability to handle data with uncertainty and imprecision etc. Fuzzy logic has tolerance for imprecision of data, while neural networks have tolerance for noisy data. A neural network’s learning capability provides a good way to adjust expert’s knowledge and it automatically generates additional fuzzy rules and membership functions to meet certain specifications. This reduces the design time and cost. On the other hand, the fuzzy logic approach enhances the generalization capability of a neural network by providing more reliable output when extrapolation is needed beyond the limits of the training data. To simplify the design and optimization of fuzzy models, process learning techniques derived from neural networks (so called neuro-fuzzy approaches) can be used.Different architectures of neuro-fuzzy systems have been discussed by a number of researchers. In this research,...
Марина! я защитила наш шедевр на 4...две тройки и ТОЛЬКО одна 5, оста.-4ки и это из 8ми человек! допники были-жуть все не по теме...=( вся группа в шоке! вобщем, благодарю за ДОБРОСОВЕСТНОЕ и ответственное сотрудничество в течение стольких лет! желаю Вам и Вашему делу процветать) в свою очередь, если у кого-то будут возникать проблемы со студ. тематикой, обязуюсь как и впредь отправлять к Вам=)