Год выпуска: 2010 Автор: Steve Ling Издательство: LAP Lambert Academic Publishing Страниц: 252 ISBN: 9783843367295
Описание
This book focuses on the real-coded genetic algorithm and different topologies of feed-forward neural networks. Results in the following areas will be reported: (1) a real-coded genetic algorithm with new crossover and mutation operations, and its applications; (2) three different topologies of variable feed-forward neural networks, and their applications to short-term electric load forecasting and hand-written graffiti recognition. The real-coded genetic algorithm (RCGA) is one evolutionary computation technique that can tackle complex optimization problems. In this book, RCGA with new genetic operations called the average-bound crossover (ABX) and wavelet mutation (WM) will be presented. The three proposed topologies of variable feed- forward network networks are: (1) the variable- structure neural network (VSNN), (2) the variable- parameter neural network (VPNN), and (3) the variable-node-to-node-link neural network (VN2NN). By taking advantage of these...