Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Speech Recognition with efficient use of Support Vector Machines



Год выпуска: 2012
Автор: Muhammad Farhan Khan and Muhammad Asif Zakriyya
Издательство: LAP Lambert Academic Publishing
Страниц: 92
ISBN: 9783848434466
Описание
The book in hand provides the reader with the basics of speech as well as in-depth technicalities of accurate recognition by use of two different artificial intelligence techniques. The literature review presented in a number of chapters, refines user's concepts about the phonetics and mel frequency ceptstral cofficients that characterize speech as well as voice. These coefficients are then operated upon in MATLAB for analysis and classification to one of the predefined classes of a trained system. After reading this book thoroughly the user will be able to conclude that the efficiency of recognition is enhanced when two artificial intelligence or classification techniques, called Linear Discriminant Analysis and Support vector machines, concatenate. This book also gives brief knowledge about the Mercer Kernel, k-nearest neighbor and many other technical concepts.


Похожие книги

  1. Sharan Jagpal, with the assistance of Shireen Jagpal. Fusion for Profit: How Marketing and Finance Can Work Together to Create Value. – М.: , 2008. – 664 с.
  2. Lean Yu, Shouyang Wang, Kin Keung Lai, Ligang Zhou. Bio-Inspired Credit Risk Analysis: Computational Intelligence with Support Vector Machines. – М.: , 2008. – 244 с.
  3. Nello Cristianini, John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. – М.: , 0. – 0 с.
  4. Committee on Scientific Use of the Radio Spectrum, Committee on Radio Frequencies, National Research. Spectrum Management for Science in the 21st Century. – М.: , 2010. – 160 с.
  5. Vojislav Kecman. Learning & Soft Managing – Support Vector Machines, Neural Networks & Fuzzy Logic Models. – М.: , 2001. – 576 с.
  6. Edited by Jack Beatson and Eltjo Schrage, with the collaboration of Mindy Chen-Wishart, Martin Hogg. Cases, Materials and Texts on Unjustified Enrichment. – М.: , 2011. – 640 с.
  7. Edited by Dagmar Schiek, Lisa Waddington and Mark Bell (with the collaboration of Tufyal Choudhury. Cases, Materials and Text on National, Supranational and International Non-Discrimination Law. – М.: , 2011. – 1118 с.
  8. Sedat Ozer and Chi Hau Chen. A kernel study on Support Vector Machines. – М.: LAP Lambert Academic Publishing, 2010. – 84 с.
  9. Isis Didier Lins,Marcio das Chagas Moura and Enrique Lopez Droguett. Support Vector Machines and Particle Swarm Optimization. – М.: LAP Lambert Academic Publishing, 2010. – 92 с.
  10. Zdenek Vyoral. Using support vector machines in fuzzy classification. – М.: LAP Lambert Academic Publishing, 2015. – 56 с.
  11. Jeff Fortuna. ICA FEATURE EXTRACTION AND SUPPORT VECTOR MACHINE IMAGE CLASSIFICATION. – М.: LAP Lambert Academic Publishing, 2010. – 184 с.
  12. Ahmad A. M. Abushariah and Teddy Surya Gunawan. Speech Recognition System using MATLAB. – М.: LAP Lambert Academic Publishing, 2011. – 112 с.
  13. Mohamed Ramadan,Almoataz Y. Abdelaziz and Amr M. Ibrahim. Series Compensated Line Protection using Support Vector Machine. – М.: LAP Lambert Academic Publishing, 2011. – 140 с.
  14. Charles Ssekabembe. Cardinal Elements of Efficient Use of Nitrogen in Agroforestry Systems. – М.: LAP Lambert Academic Publishing, 2010. – 148 с.
  15. Pallavi Baviskar. Support Vector Machine, Projection Histogram for Math Expression. – М.: LAP Lambert Academic Publishing, 2013. – 92 с.
  16. Sanjay Gharde. Support Vector Machine for Handwritten Numeral Recognition. – М.: LAP Lambert Academic Publishing, 2012. – 108 с.
  17. Muhammad Farhan Khan and Muhammad Asif Zakriyya. Speech Recognition with efficient use of Support Vector Machines. – М.: LAP Lambert Academic Publishing, 2012. – 92 с.

Образцы работ

Тема и предметТип и объем работы
Лингвистика
Лингвистика
Диплом
69 стр.
Последствия операции НАТО
Политология
Диплом
80 стр.
Коррекция нарушений осанки в саггитальной и фронтальной плоскостях у детей дошкольного возраста с ЗПР средствами АФК
Педагогика
Диплом
76 стр.
Развитие трастовых отношений в условиях современной экономики
Организация производства
Дипломный проект
83 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Настя, 26.12
Проверили мои работы, оценки хорошие! Спасибо вам!!! Очень выручили!