Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Face Recognition using Vector Quantization



Год выпуска: 2012
Автор: Prachi Natu,Shachi Natu and Tanuja Sarode
Издательство: LAP Lambert Academic Publishing
Страниц: 96
ISBN: 9783659154317
Описание
This book presents a novel approach for Face Recognition using ‘Vector Quantization’. Face Recognition is one of the popular biometric techniques used in today’s era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast—only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG...


Похожие книги

  1. Arjun Mane and Karbhari Kale. Face Recognition Using Principal Component Analysis. – М.: LAP Lambert Academic Publishing, 2015. – 144 с.
  2. Kailash Karande and Sanjay Talbar. Face Recognition using Independent Component Analysis. – М.: LAP Lambert Academic Publishing, 2012. – 136 с.
  3. Yagnesh Parmar. 3D Face Recognition Using PCA. – М.: LAP Lambert Academic Publishing, 2012. – 64 с.
  4. Vinayak Bharadi and Payal Mishra. Hyperspectral Face Recognition. – М.: LAP Lambert Academic Publishing, 2014. – 100 с.
  5. Rizoan Toufiq and Md. Rabiul Islam. Face Recognition Using Multiple Classifier Fusion. – М.: LAP Lambert Academic Publishing, 2012. – 120 с.
  6. Vinayak Bharadi and Hemchandra Kekre. Signature Recognition Using Clustering Techniques. – М.: LAP Lambert Academic Publishing, 2012. – 180 с.
  7. T. M. Kodinariya. Hybrid N-Feature Face Recognition System. – М.: LAP Lambert Academic Publishing, 2012. – 216 с.
  8. Nagaanand B. Face Recognition Using PCLDA Based Fourier Feature. – М.: LAP Lambert Academic Publishing, 2013. – 60 с.
  9. Md. Rabiul Islam,Md. Sohrab Mahmud and Md. Fayzur Rahman. Vector Quantization based Speech Recognition System. – М.: LAP Lambert Academic Publishing, 2010. – 80 с.
  10. Divyarajsinh Parmar,Yagnesh Parmar and Brijesh Mehta. 3D Face Recognition System Based on 3D Eigenfaces. – М.: LAP Lambert Academic Publishing, 2013. – 56 с.
  11. Kamal Shah and Hemchandra Kekre. Face Recognition for Surveillance Purpose. – М.: LAP Lambert Academic Publishing, 2014. – 288 с.
  12. Willer Travassos. A practical Face Recognition System using a Game with a Purpose. – М.: LAP Lambert Academic Publishing, 2010. – 64 с.
  13. Prachi Natu,Shachi Natu and Tanuja Sarode. Face Recognition using Vector Quantization. – М.: LAP Lambert Academic Publishing, 2012. – 96 с.
  14. Claudio Cusano. Face Recognition using Three-Dimensional and Multimodal Images. – М.: LAP Lambert Academic Publishing, 2011. – 148 с.
  15. Dianle Zhou. Using 3D Morphable Models for 3D Avatars and 2D Face Recognition. – М.: LAP Lambert Academic Publishing, 2014. – 148 с.
  16. Muhammad Almas Anjum and Younus Javed. Face Recognition a Challenge in Biometrics. – М.: LAP Lambert Academic Publishing, 2011. – 188 с.
  17. Taranpreet Singh Ruprah. Face Recognition using PCA &LDA Algorithm. – М.: LAP Lambert Academic Publishing, 2012. – 76 с.

Образцы работ

Тема и предметТип и объем работы
Последствия операции НАТО
Политология
Диплом
80 стр.
Технические средства обучения
Педагогика
Диплом
64 стр.
Правовая культура
Правоведение
Дипломный проект
67 стр.
Организация и управление сбытовой деятельностью предприятия
Менеджмент
Курсовая работа
34 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Марина, 19.06
Спасибо огромное!!!!