Метод постоянных скоростей в задачах механики. Первые интегралы
Год выпуска: 2015 Автор: Б. Е. Ермаков Издательство: Ленанд Страниц: 88 ISBN: 978-5-9710-2397-5 Описание В данной работе предложен новый способ применения первых интегралов механики на базе дифференциальных уравнений движения механической системы с использованием постоянных линейных или угловых скоростей. Для статики показан вывод принципа постоянных скоростей. Предназначается в качестве учебного пособия для студентов и аспирантов технических специальностей.
Похожие книги
Б.Е. Ермаков. Метод постоянных скоростей в задачах механики. – М.: Едиториал УРСС, 2000. – 152 с. А.В. Бабкин, В.И. Колпаков, В.Н. Охитин, В.В. Селиванов. Прикладная механика сплошных сред. В 3 томах. Том 3. Численные методы в задачах физики быстропротекающих процессов. – М.: МГТУ им. Н. Э. Баумана, 2006. – 520 с. В.В. Козлов. Методы качественного анализа в динамике твердого тела. – М.: НИЦ "Регулярная и хаотическая динамика", 2000. – 256 с. В.В. Козлов. Симметрии, топология и резонансы в гамильтоновой механике. – М.: УдГУ, 1995. – 432 с. Л.Р. Волевич, С.Г. Гиндикин. Метод многогранника Ньютона в теории дифференциальных уравнений в частных производных. – М.: Едиториал УРСС, 2002. – 312 с. С.М. Алейников. Метод граничных элементов в контактных задачах для упругих, пространственно неоднородных оснований. – М.: Издательство АСВ стран СНГ, 2000. – 756 с. В.В. Бабиков. Метод фазовых функций в квантовой механике. – М.: Наука. Главная редакция физико-математической литературы, 1968. – 224 с. А.Ю. Демьянов, О.Ю. Динариев, Н.В. Евсеев. Основы метода функционала плотности в гидродинамике. – М.: ФИЗМАТЛИТ, 2009. – 312 с. В.П. Маслов, О.Ю. Шведов. Метод комплексного ростка в задаче многих частиц в квантовой теории поля. – М.: Едиториал УРСС, 2000. – 360 с. А.Б. Золотов, П.А. Акимов, В.Н. Сидоров, М.Л. Мозгалева. Математические методы в строительной механике. – М.: Издательство Ассоциации строительных вузов, 2008. – 336 с. В.В. Андронов, В.Ф. Журавлев. Сухое трение в задачах механики. – М.: Регулярная и хаотическая динамика, 2010. – 184 с. К.Н. Волков, В.Н. Емельянов. Вычислительные технологии в задачах механики жидкости и газа. – М.: ФИЗМАТЛИТ, 2013. – 468 с. Ольга Антоновская und Владимир Горюнов. Метод точечных отображений в задачах нелинейной динамики. – М.: LAP Lambert Academic Publishing, 2013. – 148 с. Владимир Смолич und Александр Коваленко. Метод дополнительной переменной в задачах ТМО и теории надежности. – М.: LAP Lambert Academic Publishing, 2014. – 240 с. Б.Е. Ермаков. Метод постоянных скоростей в задачах механики. Первые интегралы. – М.: Ленанд, 2015. – 88 с. П.Н. Вабищевич. Метод фиктивных областей в задачах математической физики. – М.: Ленанд, 2017. – 160 с. Вабищевич П.Н. Метод фиктивных областей в задачах математической физики. – М.: Едиториал УРСС, 2017. – 160 с. Образцы работ
Задайте свой вопрос по вашей теме
Контакты
Поделиться
Мы в социальных сетях
Реклама
Отзывы
Ольга Я получила свою работу, пока еще не читала, но пробежалась глазами. Спасибо Вам большое! По-моему отлично, ну а как преподавателю, не знаю? Если что, напишу. Еще раз спасибо.