Год выпуска: 2011 Автор: Mehmet Ergun Bicici Издательство: LAP Lambert Academic Publishing Страниц: 172 ISBN: 9783846507490
Описание
Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the...
Мария! Спасибо огромное за проделанную работу, я ее внимательно изучала, чтобы достойно представить :)). Надо будет держаться ОЧЕНЬ уверено :)), работа после вашего сопровождения получилась замечательная :)), еще раз и снова Вам огромное, огромное спасибо!!!