Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


подбор литературы периодические источники литература по предмету

Data Mining



Год выпуска: 2012
Автор: Nidhi Arora and Hitesh Singh
Издательство: LAP Lambert Academic Publishing
Страниц: 56
ISBN: 9783848497096
Описание
Data mining can be considered a relatively recently developed methodology and technology, coming into prominence only in 1994. It aims to identify valid, novel, potentially useful, and understandable correlations and patterns in data by combing through copious data sets to sniff out patterns that are too subtle or complex for humans to detect. Data mining can be defined as the process of finding previously unknown patterns and trends in databases and using that information to build predictive models. It is the process of data selection and exploration and building models using vast data stores to uncover previously unknown patterns. Data mining can improve decisionmaking by discovering patterns and trends in large amounts of complex data. Data Mining is the discovery of knowledge of analyzing enormous set of data; by extracting the meaning of the data and then predicting the future trends and also helps companies to take sound decisions, based on knowledge and information. Data...


Похожие книги

  1. Boris Kovalerchuk, Evgenii Vityaev. Data Mining in Finance: Advances in Relational and Hybrid Methods (Kluwer International Series in Engineering and Computer Science, 547). – М.: , 0. – 0 с.
  2. Stephan Kudyba, Richard Hoptroff. Data Mining and Business Intelligence: A Guide to Productivity. – М.: , 0. – 0 с.
  3. John Wang. Data Mining: Opportunities and Challenges. – М.: , 0. – 0 с.
  4. Parag Pendharkar. Managing Data Mining Technologies in Organizations: Techniques and Applications. – М.: , 0. – 0 с.
  5. George Fernandez. Data Mining Using SAS Applications. – М.: , 0. – 0 с.
  6. Ron Kohavi, Foster Provost. Applications of Data Mining to Electronic Commerce. – М.: , 2001. – 156 с.
  7. Olivia Parr Rud. Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship Management. – М.: , 0. – 0 с.
  8. Intelligent Agents for Data Mining and Information Retrieval. – М.: , 2004. – 0 с.
  9. Francis E. H. Tay. Ordinary Shares. Exotic Methods: Financial Forecasting Using Data Mining Techniques. – М.: , 2003. – 0 с.
  10. Privacy-Preserving Data Mining: Models and Algorithms (Advances in Database Systems). – М.: , 2008. – 514 с.
  11. Data Mining Applications for Empowering Knowledge Societies. – М.: , 2008. – 356 с.
  12. Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects: 8th Industrial Conference, ICDM 2008 Leipzig, Germany, July ... (Lecture Notes in Computer Science). – М.: , 2008. – 428 с.
  13. Yukio Ohsawa, Katsutoshi Yada. Data Mining for Design and Marketing (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series). – М.: , 2009. – 344 с.
  14. Longbing Cao, Philip S. Yu, Chengqi Zhang, Yanchang Zhao. Domain Driven Data Mining. – М.: , 2010. – 237 с.
  15. PERAL TOKTAS-PALUT. PREDICTING BANK FAILURES: A DATA MINING APPROACH. – М.: , 2010. – 252 с.
  16. Joao Gama. Knowledge Discovery from Data Streams (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series). – М.: , 2010. – 255 с.
  17. Data Mining in Public and Private Sectors: Organizational and Government Applications. – М.: , 2010. – 389 с.

Образцы работ

Тема и предметТип и объем работы
Продвижение брендов в шоу-бизнесе
Электроснабжение городов и промышленных предприятий
Диплом
79 стр.



Задайте свой вопрос по вашей теме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Денис
Спасибо большое! Поправляйтесь!